Preprint out
Thermodynamic and Kinetic Parameters for Calcite Nucleation on Peptoid and Model Scaffolds - a Step Toward Nacre Mimicry.
The spread of antibiotic resistance genes (ARg) is a worldwide health risk1 and is no longer only a clinical issue. Vast reservoirs of ARg are found in natural environments2–4 such as soils, sediments and oceans. The emergence and release of ARg to the environment is in particular caused by extended use of antibiotics in farming, e.g. where the genes dissipate from the manure.5 Once in the environment, the ARg are surprisingly rapidly propagated. It is well known that the ARg are distributed to neighbour bacteria through processes of both cell sharing or through horizontal gene transfer (HGT) where one species acquirer resistance from another.6,7 Most HGT responsible for the spread of ARg are assumed to be through direct microbe-microbe contact. However, I find that the outcome of non-contact transfer is grossly underestimated. In the HGT mechanism called “Transformation”, free ARg in suspension or adsorbed to a mineral can be picked up and incorporated into non-related organisms. Considering that free DNA only can survive for a few weeks in sea- and freshwater environments,8–10 any HGT from free DNA can rightly be assumed to be local, but if the DNA gets adsorbed to a mineral, it can survive for several hundred thousands of years.11–14 If this also holds for ARg, then minerals offer a potent mechanism for distributing ARg through our environments my means of sedimentary processes.
Preprint out
Thermodynamic and Kinetic Parameters for Calcite Nucleation on Peptoid and Model Scaffolds - a Step Toward Nacre Mimicry.
Comments