Combining geology, surface geochemsitry and mircobiology

Combining recent research across disciplines, I see evidence that minerals hold a high and unrecognized potential for enhancing the distribution of the ARg in the environment. Adsorption of ARg to minerals significantly increases the ARg’s lifetime and facilitates their distribution by sedimentary transport processes. In addition, minerals also serve as a) sites for horizontal gene transfer (HGT), b) platforms for microbial growth and, hence 3) act as hot spots for propagation of adsorbed ARg to other microbes. However, some minerals and ARg are bound more strongly than others and various bacteria have different affinities toward various minerals. Those variations in affinity are poorly quantified but vital for predicting the distribution of ARg in the environment.

LJ conony.png

Bacterial colony formation.

By Lisselotte Jauffred (NBI collaborator)

The spread of antibiotic resistance genes (ARg) is a worldwide health risk1 and is no longer only a clinical issue. Vast reservoirs of ARg are found in natural environments2–4 such as soils, sediments and oceans. The emergence and release of ARg to the environment is in particular caused by extended use of antibiotics in farming, e.g. where the genes dissipate from the manure.5 Once in the environment, the ARg are surprisingly rapidly propagated. It is well known that the ARg are distributed to neighbour bacteria through processes of both cell sharing or through horizontal gene transfer (HGT) where one species acquirer resistance from another.6,7 Most HGT responsible for the spread of ARg are assumed to be through direct microbe-microbe contact. However, I find that the outcome of non-contact transfer is grossly underestimated. In the HGT mechanism called “Transformation”, free ARg in suspension or adsorbed to a mineral can be picked up and incorporated into non-related organisms. Considering that free DNA only can survive for a few weeks in sea- and freshwater environments,8–10 any HGT from free DNA can rightly be assumed to be local, but if the DNA gets adsorbed to a mineral, it can survive for several hundred thousands of years.11–14 If this also holds for ARg, then minerals offer a potent mechanism for distributing ARg through our environments my means of sedimentary processes.


We are currently combining a microbiological top down techniques with bond and bulk level bottom up approaches to address this hypothesis.

Stay tuned for progress

(Check the SUBPROJECT below)

ARg linked to an AFM tip: Force spectroscopy  can provide data for understanding the interactions at a bond level. (AFM: atomic force microscope)


I am looking for students with knowledge of

geology, chemistry or microbiology

to look into different aspects of mineral-DNA-microbial binding.  

You will be trained in atomic force spectroscopy and how to handle DNA and taught how to study interactions and dynamics at mineral surfaces.

Send an informal email for for more info: kks@sund.ku.dk



In Kamille´s PhD project she will test if ARG adsorbed to mineral surfaces can account for the broad distribution of ARG in our environments. 

velux logo.png


1              S. M. Hatosy and A. C. Martiny, Appl. Environ. Microbiol., 2015, 81, 7593–7599.

2              J. L. Martínez, Science, 2008, 321, 365–367.

3              K. J. Forsberg, A. Reyes, B. Wang, E. M. Selleck, M. O. A. Sommer and G. Dantas, Science, 2012, 337, 1107–1111.

4              A. F. C. Leonard, L. Zhang, A. J. Balfour, R. Garside, P. M. Hawkey, A. K. Murray, O. C. Ukoumunne and W. H. Gaze, Environ. Int., 2018, 114, 326–333.

5              Y.-G. Zhu, T. A. Johnson, J.-Q. Su, M. Qiao, G.-X. Guo, R. D. Stedtfeld, S. A. Hashsham and J. M. Tiedje, Proc. Natl. Acad. Sci., 2013, 110, 3435–3440.

6              Y. Boucher, O. X. Cordero and A. Takemura, mBio, 2011, 2, 1–8.

7              B. J. Shapiro and M. F. Polz, Trends Microbiol., 2014, 22, 235–247.

8              T. Dejean, A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet and C. Miaud, PLOS ONE, 2011, 6, e23398.

9              P. F. Thomsen, J. Kielgast, L. L. Iversen, P. R. Møller, M. Rasmussen and E. Willerslev, PLOS ONE, 2012, 7, e41732.

10           P. F. Thomsen, J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando and E. Willerslev, Mol. Ecol., 2012, 21, 2565–2573.

11           M. G. Lorenz, B. W. Aardema and W. E. Krumbein, Mar. Biol., 1981, 64, 225–230.

12           G. Romanowski, M. G. Lorenz and W. Wackernagel, Appl. Environ. Microbiol., 1991, 57, 1057–1061.

13           M. Khanna and G. Stotzky, Appl. Environ. Microbiol., 1992, 58, 1930–1939.

14           N. Lu, J. L. Zilles and T. H. Nguyen, Appl. Environ. Microbiol., 2010, 76, 4179–4184.

15           K. M. Nielsen, L. Calamai and G. Pietramellara, in Nucleic Acids and Proteins in Soil, Springer, Berlin, Heidelberg, 2006, pp. 141–157.

16           G. Pietramellara, J. Ascher, F. Borgogni, M. T. Ceccherini, G. Guerri and P. Nannipieri, Biol. Fertil. Soils, 2009, 45, 219–235.

17           M. G. Lorenz and W. Wackernagel, in Risk Assessment for Deliberate Releases, Springer, Berlin, Heidelberg, 1988, pp. 110–119.

18           S. Demanèche, L. Jocteur-Monrozier, H. Quiquampoix and P. Simonet, Appl. Environ. Microbiol., 2001, 67, 293–299.

19           P. Cai, Q. Huang, Y. Lu, W. Chen, D. Jiang and W. Liang, J. Environ. Sci. China, 2007, 19, 1326–1329.

20           W. H. Yu, N. Li, D. S. Tong, C. H. Zhou, C. X. (Cynthia) Lin and C. Y. Xu, Appl. Clay Sci., 2013, 80, 443–452.